Learning

YZM 3226 – Makine Öğrenmesi
Outline

- What is Learning?
- Types of Learning
 - Supervised (Gözetimli) Learning
 - Unsupervised (Gözetimsiz) Learning
 - Reinforcement (Destekli) Learning
Learning process:
Learner (a computer program) processes data D representing past experiences and tries to either
- develop an appropriate response to future data, or
- describe in some meaningful way the data seen.

Example:
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:
- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms
Defining the Learning Task

Improve on task, \(T \), with respect to performance metric, \(P \), based on experience, \(E \).

Example 1: Learning to play checkers
- \(T \): Playing checkers
- \(P \): Percentage of games won against an arbitrary opponent
- \(E \): Playing practice games against itself

Example 2: Learning to recognize
- \(T \): Recognizing hand-written words
- \(P \): Percentage of words correctly classified
- \(E \): Database of human-labeled images of handwritten words

Example 3: Learning to categorize
- \(T \): Categorize email messages as spam or legitimate.
- \(P \): Percentage of email messages correctly classified.
- \(E \): Database of emails, some with human-given labels

Example 4: Learning to drive
- \(T \): Driving on four-lane highways using vision sensors
- \(P \): Average distance traveled before a human-judged error
- \(E \): A sequence of images and steering commands recorded while observing a human driver.
Learning Types

- **Supervised Learning**
 - Learning mapping between *input x and desired output y*
 - Teacher gives me y’s for the learning purposes

- **Unsupervised Learning**
 - *No specific outputs* given by a teacher
 - Learning relations between data components

- **Reinforcement Learning**
 - Learning mapping between *input x and desired output y*
 - Critic does not give me y’s but instead a signal of how good my answer was (for example true or false)

- **Other types of learning**
 - Learning associations, concept learning, explanation-based learning, etc.
Learning Associations

- Basket analysis:
 - $P(Y | X)$ probability that somebody who buys X also buys Y, where X and Y are products/services.
 - Example: $P(\text{chips} | \text{beer}) = 0.7$

- If we know more about customers:
 - $P(X | Y, D)$
 - where D is the customer profile (age, gender, marital status, …)
 - In case of a Web portal, items correspond to links to be shown in advance
Learning Types

Supervised Classification = Classification
⇒ We know the class labels and the number of classes

Unsupervised Classification = Clustering
⇒ We do not know the class labels and may not know the number of classes
Supervised vs. Unsupervised Learning

- **Supervised Learning**: Class labels are known
- **Unsupervised Learning**: Class labels are unknown

![Diagram](chart.png)

Fig. 1 Difference between supervised and unsupervised learning
Learning Types

- Supervised Learning with a Teacher
- Reinforcement Learning
- Unsupervised Learning
Supervised vs. Unsupervised Learning

Supervised Learning Workflow:
- Raw Data
- Scaled Data
- Training Set
- Validation Set
- Build Model
- Analyze and Tune
- Validate
- New Data
- Profit!

Unsupervised Learning Workflow:
- Raw Data
- Scaled Data
- Build Model
- Analyze and Tune
- Validate
- Apply Model to either input data, or new data
- Profit!
Supervised Learning

Data: \(D = \{d_1, d_2, \ldots, d_n\} \) \hspace{1cm} a set of \(n \) examples
\[d_i = \langle x_i, y_i \rangle \]
\(x_i \) is input vector, and \(y \) is desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)
\[s.t. \quad y_i \approx f(x_i) \quad \text{for all} \quad i = 1, \ldots, n \]

Two types of problems:
- **Regression:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **continuous**
- **Classification:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **discrete**
Supervised Learning Examples

● **Classification**
 - Example: Credit scoring
 - The bank may calculate the risk given the amount of credit and the information about the customer.

● **Regression**
 - Example: A system for predicting the price of a used car
 - Input: car attributes such as brand, year, ..., etc.
 - Output: the price of the car.

\[f : X \rightarrow Y \]

Regression: X discrete or continuous \(\rightarrow \) Y is **continuous**

Classification: X discrete or continuous \(\rightarrow \) Y is **discrete**
Supervised Learning: Two Steps

- **Learning (training)**
 - from a **training set** of examples to newly learnt knowledge

- **Validation and Application**
 - **test** knowledge is checked,
 - if necessary, additional training is given
 - if not necessary, new situation is applied
Supervised Learning: Two Steps

- **Learning (training):** Learn a model using the training data
- **Testing:** Test the model using test data to assess the model accuracy

\[\text{Accuracy} = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}} \]
Output of Training

- Tree

- Classification rules

 - if example satisfies condition
 - then assign it to class X

- Weight values in Neural Network

- Probabilities in Naive Bayesian

- Hyperplane
Example Problem

- Making prediction about “neighbour will go to work by walk or drive”.
Example Problem

- Making prediction about “neighbour will go to work by walk or drive”.
- Inputs:
 - Temperature (Sıcaklık)
 - Precipitation (Yağış)
 - The day of the week (Haftanın hangi günü)
 - She/he made shopping when returning back (Alışveriş yaptığı güne denk geliyor mu?)
 - Type of clothes (casual or formal) (Nasıl giyinmiş?)
<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>19</td>
<td>snow</td>
<td>mon</td>
<td>yes</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>65</td>
<td>none</td>
<td>tues</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>19</td>
<td>snow</td>
<td>mon</td>
<td>yes</td>
<td>casual</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>19</td>
<td>snow</td>
<td>mon</td>
<td>yes</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>65</td>
<td>none</td>
<td>tues</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>19</td>
<td>snow</td>
<td>mon</td>
<td>yes</td>
<td>casual</td>
<td>drive</td>
</tr>
</tbody>
</table>
Prediction 2

<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
</tbody>
</table>
```
Prediction 3

<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>82</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>78</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>21</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>18</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>19</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>formal</td>
<td>drive</td>
</tr>
<tr>
<td>17</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>20</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>temp</th>
<th>precip</th>
<th>day</th>
<th>shop</th>
<th>clothes</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>82</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>78</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>walk</td>
</tr>
<tr>
<td>21</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>18</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>19</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>formal</td>
<td>drive</td>
</tr>
<tr>
<td>17</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
<tr>
<td>20</td>
<td>none</td>
<td>sat</td>
<td>no</td>
<td>casual</td>
<td>drive</td>
</tr>
</tbody>
</table>
Alternatives:
1. Drive because today is Monday.
2. Walk because it is raining.
3. Walk when we consider temperature and clothes.
4. …
Decision Tree

- precip
 - none
 - rain
 - clothes
 - formal
 - drive
 - casual
 - walk
 - snow
 - drive

- shop?
 - yes
 - weekend?
 - yes
 - drive
 - no
 - walk
 - no
 - temp > 90?
 - yes
 - drive
 - no
 - walk

Unsupervised Learning

- Learning “what normally happens”
- No output (we do not know the right answer)
Unsupervised Learning

- **Data:** \(D = \{d_1, d_2, ..., d_n\} \)
 \[d_i = x_i \quad \text{vector of values} \]
 No target value (output) \(y \)

- **Objective:**
 - learn relations between samples, components of samples

Types of problems:
- **Clustering**
 Group together “similar” examples, e.g. patient cases
- **Density estimation**
 - Model probabilistically the population of samples
Unsupervised Learning

- *Clustering*: A kind of unsupervised Learning
- Grouping similar instances
Example Clustering Applications

- Customer segmentation in CRM
- Image clustering
- Document Clustering
Distance Functions

Continuous Data

Euclidean distance

\[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \]

Hamming distance

\[d(x, y) = \sum_{i=1}^{n} |x_i - y_i| \]

Tchebyschev distance

\[d(x, y) = \max_{i=1,2,\ldots,n} |x_i - y_i| \]

Minkowski distance

\[d(x, y) = \left(\sum_{i=1}^{n} (x_i - y_i)^p \right)^{1/p}, \quad p > 0 \]

Canberra distance

\[d(x, y) = \sum_{i=1}^{n} \frac{|x_i - y_i|}{x_i + y_i}, \quad \text{x_i and y_i are positive} \]

Angular separation

\[d(x, y) = \frac{\sum_{i=1}^{n} x_i y_i}{\left(\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 \right)^{1/2}} \]
Reinforcement Learning (RL)

- We want to learn: $f : X \rightarrow Y$
- We see samples of x but not y
- Instead of y we get a feedback (reinforcement) from a critic about how good our output was
Reinforcement Learning (RL)

- **Learning a policy**: A sequence of actions/outputs
- The goal is to select outputs that lead to the best reinforcement
- Learn through experience from **trial and error**
- Just provides an indication of **success** or **failure**.
Learning to ride a bicycle:

- The goal given to the Reinforcement Learning (RL) system is simply to ride the bicycle without falling over.
- Begins riding the bicycle and performs a series of actions that result in the bicycle being tilted **45 degrees** to the right.
- RL system turns the handle bars to the **LEFT**
 - Result: CRASH!!!
 - Receives negative reinforcement
- RL system turns the handle bars to the **RIGHT**
 - Result: CRASH!!!
 - Receives negative reinforcement
- RL system has learned that the “state” of being titled 45 degrees to the right is bad.
- Repeat trial using **40 degree** to the right.
- By performing enough of these **trial-and-error interactions** with the environment, the RL system will ultimately learn how to prevent the bicycle from ever falling over.
Applications of RL

- Checker’s Game
- Learning to play backgammon
- Inventory management
- Job-shop scheduling
- Robotic manipulation
- Robot arm control
- Robot in a maze (Path planning)
- Parking
- Football (Robo-soccer)
- Tetris
- ...

Reinforcement Learning - Example

Internal state

Environment

Reward

Observation

Learning rate α
Inverse temperature β
Discount rate γ